
Practical I18N
with PHP and

MySQL
Jim Winstead
MySQL Inc.

jimw@mysql.com

MySQL Users Conference 2006
April 25, 2006

What is I18N?
• Internationalization (I18N)
- “The practice of designing and writing

programs that can be easily configured to act
with the user in more than one language.”

• Localization (L10N)
- “The development process that customizes

software and documentation for use in a
specific country or language environment.”

What do I have to
worry about?

• What are you sending the browser?
• What is the browser sending you?
• What are you storing in the database?
• How do you sort strings?

Character Sets and
Character Encodings

• http://www.w3.org/TR/charmod/
- “A ‘character encoding’ is a mapping from a

character set definition to the actual code
units used to represent the data.”

Unicode
• http://www.unicode.org/
http://www.unicode.org/faq/unicode_web.html

UTF-8

Collation
• “The process of ordering units of textual

information.”
• This depends on the language of the

content, which you may or may not be
able to determine based on the character
set.

• The Unicode Collation Algorithm

What should you
send?

• What do you have?
• What do you want back?
• Set in the header:
header(”Content-Type: text/html; charset=utf-8”);

• And in the document:
<?xml version=”1.0” encoding=”utf-8”?>
<meta http-equiv=”Content-type” content=”text/html;
charset=utf-8” />

What is usually sent?

• The default encoding for HTML is
ISO-8859-1

• The default encoding for XML is UTF-8
• …but that depends on the Content-type.

(See RFC 3023.)

Handling funny
characters in HTML
• å = å = å = å
• This is HTML. å may not equal å in

all XML (or SGML) documents.
• Å = Å = &#C5; = Å

except:
Å = Å = Å

What will you get
back?

• Browsers generally don’t tell you what
character set they’ve sent.

• If you send UTF-8, you should get back
UTF-8.

• If you send another character set, you
should get back that character set.

• Test for valid UTF-8: http://xrl.us/kyi9

Using a hidden field

• <input type=”hidden” name=”charset-
check” value=”ФЫВ” />

• Check what you got in the hidden field,
which should help you determine what
you got in the other fields.

What are you storing
in the database?

• If you can constrain yourself to one
charset, use that! (But don’t forget to
code your application to scream when it
gets stuff it can’t handle.)

• The most defensive choice is UTF-8.

Converting the data
• mbstring extension:
mb_convert_encoding(string, to, from)

• iconv extension:
iconv(from, to, string)

• recode_extension:
recode_string(request, string)

• utf8_encode() (but it only handles
iso-8859-1 to utf-8)

Dealing with XML
from PHP

• PHP 4 does not natively handle XML in
arbitrary input encodings.

• It is hardcoded to default to ISO-8859-1,
and you can only tell it to use a different
encoding, not fall back to the encoding
detection as defined in the XML
standard.

But PHP 5 is better

• PHP 5 improves this situation slightly: it
still defaults to ISO-8859-1, but you can
tell it to behave the right way.

• A way to work around things from Steve
Minutillo:
http://xrl.us/kyie

Character Sets in 4.1

• Per-table, database, and server
• Default character set is latin1 (Windows

1252) and default collation is
latin1_swedish_ci

Introducers

• _latin1”fiancée” COLLATE
latin1_general_cs

• Does not convert the string, but tells the
server what charset that string literal is in

Converting

• CONVERT(field USING utf8)

• CAST(field AS VARCHAR(255) CHARACTER
SET utf8)

Using collations

• Easy: SELECT x FROM T ORDER BY x;
• Tricky: SELECT x FROM T WHERE x = 'Y';

Collation coercibility
• An explicit COLLATE clause has a coercibility of 0. (Not coercible

at all.)

• The concatenation of two strings with different collations has a
coercibility of 1.

• The collation of a column or a stored routine parameter or local
variable has a coercibility of 2.

• A “system constant” (the string returned by functions such as
USER() or VERSION()) has a coercibility of 3.

• A literal's collation has a coercibility of 4.

• NULL or an expression that is derived from NULL has a coercibility
of 5.

Converting from 4.0
• Not a problem — unless you cheated
• You can use the BINARY field type to

transition:
- On 4.0:
ALTER TABLE t1 MODIFY utf8_col BINARY(255);

- On 4.1:
ALTER TABLE t1 MODIFY utf8_col CHARACTER
SET utf8;

Some notes on L10N
• gettext extension: keep your application

in English, but put text strings in gettext()
(or _()) function calls

• Not a great solution for a text-heavy web
application or site.

• Template systems like Smarty have
solutions for this

The future

• PHP 6 will have native Unicode string
handling. It’s a work-in-progress.

Practical I18N
with PHP and

MySQL
Jim Winstead
MySQL Inc.

jimw@mysql.com

MySQL Users Conference 2006
April 25, 2006

